Welcome, Friend!

It looks like you're new here. If you want to get involved, click one of these buttons!

Veritas-Health LLC has recently released patient forums to our Arthritis-Health web site.

Please visit http://www.arthritis-health.com/forum

There are several patient story videos on Spine-Health that talk about Arthritis. Search on Patient stories
Protect anonymity
We strongly suggest that members do not include their email addresses. Once that is published , your email address is available to anyone on the internet , including hackers.

All discussions and comments that contain an external URL will be automatically moved to the spam queue. No external URL pointing to a medical web site is permitted. Forum rules also indicate that you need prior moderator approval. If you are going to post an external URL, contact one of the moderators to get their approval.
Attention New Members
Your initial discussion or comment automatically is sent to a moderator's approval queue before it can be published.
There are no medical professionals on this forum side of the site. Therefore, no one is capable or permitted to provide any type of medical advice.
This includes any analysis, interpretation, or advice based on any diagnostic test

How Fast Must Santa Fly?

babyruthbbabyruth Posts: 260
edited 06/11/2012 - 8:58 AM in Lighten and Brighten

The distance Santa has to travel can be estimated from the following. First, while the surface area of Earth is about 1014 square meters, only about 30 percent of that is land mass, or about 0.3 x 1014 square meters. Second, we'll assume, for simplicity's sake, that the 800 million homes are equally distributed on this land mass. Dividing 0.3 x 1014 by 800 million gives 4 x 104 square meters occupied by every household (about six football fields); the square root of that is the distance between households, about 200 meters. Multiply this by the 800 million households to get the distance Santa must travel on Christmas Eve to deliver all the children's gifts: 160 million kilometers, farther than the distance from here to the sun.

Thanks to the rotation of the earth, Santa has more time than children might initially think. Standing on the International Date Line, moving from east to west and crossing different time zones, Santa has not just 10 hours to deliver his presents (from 8 p.m., when children go to bed, until 6 a.m., when they wake up), but an extra 24 hours- 34 hours in all.

Even so, Santa's task is daunting. Now, some have guessed that Santa accomplishes his task by traveling at a speed close to that of light-let's say, 99.999999 percent of the speed of light. By traveling that fast, in fact, Santa can deliver all his presents in just 500 seconds or so, with plenty of time left over (the remainder of the 34 hours) to polish off the cookies the children have left him on their kitchen tables.

There are certain consequences, however, of Santa's traveling at this frantic pace. For example: First, children may not be able to see Santa racing across the dark night sky, but they may be able to see a trail of light caused by Cerenkov radiation, a phenomenon created when charged objects travel faster than the speed of light (which they can do in transparent media, but not in a vacuum). Since the basic component of our atmosphere is nitrogen, light is slowed to 99.97 percent of its usual speed of 300,000 kilometers per second. Santa travels faster than this and undoubtedly is charged; as a consequence, then, he will emit visible photons. (Unfortunately, that light will be obscured by the light caused by the friction created when Santa rushes through the atmosphere. Also, Santa might roast in all this heat, but we'll presume that Santa's sleigh, like space capsules, has special protective shielding.)

Second, children will notice that as Rudolph, Santa's lead reindeer, is rushing toward their homes, his nose is no longer red. The color depends on just how fast Rudolph is moving, turning yellow, then green, then blue, then violet, and finally turning invisible in the ultraviolet range as he accelerates to higher and higher speeds. This change in color is a well-known phenomenon, called the Doppler shift, which astronomers take advantage of to figure out the speeds with which the stars and galaxies in our expanding universe are moving with respect to us; from that information, the distances to these celestial objects can be deduced. Using the accompanying table, children can determine how fast Rudolph is traveling by noting the color of his nose.

One worry Santa has is whether, with his irremediable girth, he'll be able to squeeze into all those chimneys. Traveling at nearly the speed of light makes the problem worse, because Santa gains mass (his kinetic energy adds to his mass, as Einstein's famous E = mc2 attests). Children believe that Santa will easily fit in the chimney, because from their frame of reference, even though Santa is heavier, he has contracted. From Santa's frame of reference, though, the chimney is narrower than Santa is.
But children need not fear. The theory of relativity assures us that Santa will fit (see figure 4), and their packages will be delivered on time.

Children might also wonder why Santa never seems to age. From year to year, he retains his cherub face and merry laugh, his long white beard and his round belly that jiggles like a bowlfull of jelly. The fact is that for objects traveling at close to the speed of light, time slows down. So, the more packages Santa delivers, the more he'll travel, and the more he'll remain the same, carrying on the Christmas tradition for generations of children to come.

Read more: http://wiki.answers.com/Q/How_can_Santa_get_round_the_world_so_fast#ixzz1hFQkPAeN

I hope this gives some of you a good chuckle, and if only for a moment, a break from your pain.
wishing you all a happy and healthy holiday and prosperous new year!
Sign In or Register to comment.